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Learning Objectives

Acquire some understanding of how language models work in various scenarios

Obtain an overview of recent interpretability techniques

Build intuitions on the potential inner works of large language models




Outline

1. What is captured in BERT?

2. Why pretrained models generalize?

3. What does in-context learning do?




Outline

1. Whatis captured in BERT?
o Attention patterns
o  Probing capture capabilities in representations

2. Why pretrained models generalize?

3. What does in-context learning do?




BERT Attention Patterns

Restate Transformer’s attention mechanism:

The new representation of position i is the attention-weighted combination of other positions' value

Higher a;; —bigger contribution of position j to position i
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BERT Attention Patterns: Stats
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BERT Attention Patterns: Stats

High entropy heads in lower layers:
« Bag-of-words alike mechanism
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BERT Attention Patterns: Stats

Lower entropy in middle layers:
Start forming certain patterns?
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BERT Attention Patterns: Stats

Rising entropy in deep layers:
More global information?
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BERT Attention Patterns: Common Patterns
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Attend Broadly (Left—Right) [1]

Common Pattern 1: Broad attenti

on

» Neural networks are hard to interpret
» Various stuffs mixed together, hard to tell
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BERT Attention Patterns:
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Attend to Next (Left—Right) [1]

Common Patterns

Common Pattern 2: Attend to next token

» Reverse RNN style
 Learned positional relation in pretraining



BERT Attention Patterns: Common Patterns

found
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- . » Effect unclear
[SEP] [SEP] Some consider it a “none” operation
: th.e th_e Some consider it as an information hub

wingspan wingspan Maybe a mix of both, at different heads
IS IS

() “0 24 24
28 28
mm mm

[SEP]/ - \[sEP] [SEP]

Attend to [SEP] and punctuations (Left—Right) [1]




BERT Attention Patterns

- Linguistic Examples
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BERT Attention Patterns: Linguistic Examples
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BERT Attention Patterns: Summaries

Many language phenomena are captured somewhere in the pretrained parameters
1. Some attention head corresponds to linguistic relations
2. More captured in pretraining, may not change much in fine-tuning




BERT Attention Patterns: Summaries

Many language phenomena are captured somewhere in the pretrained parameters

1. Some attention head corresponds to linguistic relations
2. More captured in pretraining, may not change much in fine-tuning

Practical Implications:
1. Attention weights reflect the importance perceived by language models
2. An effective way to gather feedback from LLMs, e.g,, to train retrievers in RAG
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Outline

1. What is captured in BERT?
o Attention patterns
o Probing capture capabilities in representations

2. Why pretrained models generalize?

3. What does in-context learning do?




Probing Pretraining Representations

Probing what is stored in the representations of pretrained models

Labels

Binary classifiers

Span
representations
| 1
' ' Contextual
E [ S0 ] [ e J [ £ ] [ © ] [ €, ] E vectors
1 f f f b
: [ Pre-trained encoder ] E
: .'""i""", f""i""‘. .'"""i """" ! .'""i""‘. F""i""’y :
| | i eat | strawberry | ice ! cream | | Inputtokens

enney, lan, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019



Probing Pretraining Representations

Labels
Representa-ti

oNns as static . "
Binary classifiers

features

\I [1,2) Span

- = — o " representations

C T T T \
' ' Contextual
E [ €o ] [ & J [ 5 ] [ S ] [ €, ] E vectors
: f f f b
: [ Pre-trained encoder ] E
: .'""i""", f""i""‘. .'"""i """" ' .'""i""‘. F""i""‘y :
| 111 eat | i strawberry i ice i !cream i | Inputtokens
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Edge Probing Technique [2]

[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019

Mixing representations from layers:
R = Zwlhé ;w! = softmax(a’)
l

» Weighted combination of layers (1)
« Combination weights (a') is trained
per task with the classification layer



Probing Pretraining Representations

Simple I' . Mixing representations from layers:
o . abels _
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: [ e ] [ o J [ o ] [ o ] [ R ] E Contextual _

; 0 1 2 3 + ) 1 vectors If the representation perform well

l [ f P—— fd y f f ] : * 3as static features

| ¥ ¥ = ramet e ¥ f E « for simple MLP classifier

UV Test | [etwberry | | o | oream | | Input tokens * inalanguage task

| e B e B B - Then it encodes useful information

o i i i o ) o, ] . S i o i, ) i (i i [ ],

Edge Probing Technique [2]

i Hiii7 I f iR 77,
LA A e

[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019 CM U 1 1 667 F
- all 2




Probing Pretraining Representations

Mixing representations from layers:
hnix — Zw’hé ; wt = softmax(a')
l

Labels

Binary classifiers

Center-of-Gravity:

Span

representations E[l] = Z [-w
| 1 l
D D D B Bl e « Expected layer to convey the
| } 3 } poo e information needed by the probe task
| [ Pre-trained encoder ] | « larger — information at hlgher Iayers
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Edge Probing Technique [2]

[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019



Probing Pretraining Representations

Mixing representations from layers:
ix — LRl .10 — l
h'™* = Z w'h;;w" = softmax(a")

Labels

Binary classifiers

Center-of-Gravity:

Span
representations E[l] = Z [-w!
| I l
(o) (&) (&) (&) (o) Comoa « Expected layer to convey the
B } 3 } poo information
E [ Pre-trained encoder ] :
S N (S N I £ Expected Layer:
L1 ea | stawemy | ice [ |oream | | inputiokens A' = ProbeAcc(0: 1) — ProbeAcc (0:1 = 1)
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Edge Probing Technique [2] . - The benefit of adding layer 1

. E[Al] The expected Iayer to solve the
probing task

[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019




Probing Pretraining Representations: Probing Tasks

Task Description Type

Part-of-Speech s the token a verb, noun, adj, etc. Syntactic
Constituent Labeling Is the span a noun phrase, verb phrase, etc. Syntactic
Dependency Labeling Label the functional relationship between tokens, e.g. Syntactic

subject-object?

Named Entity Classify the entity type of a span, e.g., person, location, etc.
Labeling

Semantic Role Label the predicate-augment structure of a sentence
Labeling

Coreference Determine the reference of mentions to entities

Semantic Proto-Role  Classifier the detailed role of predicate-augment

Relation Classification Predict real-world relations between entities

Syntactic/Semantic
Semantic

Semantic
Semantic

Semantic/Knowledge

Example Language Tasks to Probe BERT [2]

[2] Tenney, lan, et al. "What do you learn from context? probing for sentence structure in contextualized word representations." ICLR 2019



Probing Pretraining Representations: Probing Tasks

Probing Task GPT-1  BERT BERT
(base) (base) (Large All very good numbers:
)
Part-of-Speech 950 957 969 The pretrained representations convey

syntactic and sematic information
Constituent Labeling 84.6 86.7 870

Dependency Labeling 94.1 851 954
Named Entity Labeling 925  96.2 96.5
Semantic Role Labeling 89.7 913 923
Coreference 863 902 914
Semantic Proto-Role 83.1 86.1 858
Relation Classification 81.0 820 824
Macro Average 38.3 393 91.0

Overall Probing Results [2]

Iorsissccssss e
[3] Tenney, lan, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline.” ACL. 2019. CMU 1 1




Probing Pretraining Representations: Across Layers

Mixing representations from layers:

mix — LRl .yl — l
h'™* = E w'h;;w" = softmax(a")
l

Layeri1 0 2 4 6 8 10 12 14 16

Dependency Labeling 5.69 13.75 Center-of-Gravity:
l
Semantic Role Labeling 6.54 m « Expected layer to convey the
information
Coreference 9.47 m

Semantic Proto-Role 9.93 [P R¢ Expected Layer:
A! = ProbeAcc(0:1) — ProbeAcc (0:1 — 1)
Relation Classification 9.40 m

1-Al
E[al] = &
Edge Probing Results of BERT Large [3].

=3ar
« A': The benefit of adding layer 1
« E[A']: The expected layer to solve the

p ro b in g tas k £ ‘.4,:,:!:’:’ ’—"Z—" / '/ »

[3] Tenney, lan, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline.” ACL. 2019.




Probing Pretraining Representations: Across Layers

Layerl 0? 4??1.01.21.41.6 Different tasks are tackled at different
Part-of-Speech m layers

Constituent Labeling m - Syntactic tasks at lower layers
Dependency Labeling 569 . girensantic/Knowledge tasks at higher
Named Entity Labeling m
Semantic Role Labeling 6.54 m
Coreference 9.47 m

Semantic Proto-Role 9.93 |\ ip

Relation Classification 9.40 m

Edge Probing Results of BERT Large [3].

[3] Tenney, lan, Dipanjan Das, and Ellie Pavlick. "BERT Rediscovers the Classical NLP Pipeline.” ACL. 2019.



Probing Pretraining Representations: Across Training Steps

Ave. Performance

0.9+ Example Linguistic Tasks:

 Part-of-Speech
0.8 « Named Entity Labeling
+ Syntactic Chunking

0.7 1

| "

Ok 200k 400k 600k 800k ™
Linguistics Task Probing at RoBERTa Pretraining Steps [4].

0.6

——= Random Guess ~  seees GloVe + Linear CIf. Our Checkpoints [ Learning Progress-90% M Learning Progress-97%
--=: Random Vector + Linear CIf. = == Original RoOBERTagase —— exp. moving average curve [2 Learning Progress-95%

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.




Probing Pretraining Representations: Across Training Steps

Ave. Performance

0.1754 . ' : . ' . Example Factual/Commonsense Tasks:
0.1501 . SOUAD
0.125] « ConceptNet
« Google Relation Extraction
0.100 1
0.0751
0.050 1
0.025 1
0.000 1 - —

Ok 200k 400k 600k 800k ™
Linguistics Task Probing at RoBERTa Pretraining Steps [4].

——= Random Guess ~  seees GloVe + Linear CIf. Our Checkpoints [ Learning Progress-90% M Learning Progress-97%
--=: Random Vector + Linear CIf. = == Original RoOBERTagase —— exp. moving average curve [2 Learning Progress-95%

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.



Probing Pretraining Representations: Across Training Steps

Ave. Performance

0:4% sl B R — Example Reasoning Tasks:
0.421 -

« Taxonomy Conjunction
0.40- « Multi-Hop Composition
— » Object Comparison
0.36-
0.34 1

0.32
0.301 : , , . .
0k 200k 400k 600k 800k 1M

Reasoning Task Probing at ROBERTa
Pretraining Steps [4].

——= Random Guess ~  seees GloVe + Linear CIf. Our Checkpoints [ Learning Progress-90% M Learning Progress-97%
--=: Random Vector + Linear CIf. = == Original RoOBERTagase —— exp. moving average curve [2 Learning Progress-95%

[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021.



Probing Pretraining Representations: Across Training Steps

Ave. Performance Ave. Performance Ave. Performance
0.9] T A s mmammman | 0175] = m——— e — s 0.44
0.150 0.42
0.81 0.1251 0.40;
0.1001 0.38+
ol B P P AT PP T e 0.075- 0.36.
0.0501 0.34 -
0.6 ‘

E 0.025 1 0.321
wn—nnl—ll-"—"“-‘"_l """"" ' 0000- O.BO-ﬁ

Probing at Pretraining steps in Linguistic (left), Factual/Commonsense (middle), and Reasoning (right) tasks [4]

e (apturing tasks at different conceptual difficulty at different rate
e [Emergent improvements

e (Certain tasks require certain scale

772 7 /
2 o e

92292252
[4] Liu, et al. "Probing Across Time: What Does RoBERTa Know and When?." EMNLP 2021. CM U




Probing Pretraining Representations: Summary

From the observatory point of view:

e Some attention patterns are intuitive

e Pretrained representations convey strong language information

e Different tasks are captured at different layers and different steps

e And the conceptual difficulty of tasks aligns with where & when they are captured

7 B
7 e e
LI IIITII I = F I I I T T

2
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Probing Pretraining Representations: Summary

I§is temptingto thinklanguage models capture language semanticsfrom a ground up way:
Syntactic »Semantic — Factual - Reasoning —»General Intelligence

e Like a classic NLP pipeline
e Like how human brains learn natural language

111177777777 IR ZEPA 77
LI 7 I —FFFITTF
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Probing Pretraining Representations: Summary

I§is temptingto thinklanguage models capture language semanticsfrom a ground up way:

Syntactic »Semantic — Factual - Reasoning —»General Intelligence

e Like a classic NLP pipeline

e Like how human brains learn natural language\

But:

e (lassic NLP tasks are not really ground up, best systems are often more direct &
straightforward

e We really do not know how human brains work, perhaps less than we know how LLM
works

Practical implications:
e Efficient inference by only using what is needed: early exist, sparsity, distillation, etc.

77777 AR 7 , 7
T 7 A I I T —FF AT T 77
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@ Start presenting to display the audience questions on this slide.



Outline

1. What is captured in BERT?

2.  Why pretrained models generalize?
o Loss landscapes

o Implicit bias of language models

3. What does in-context learning do?




Understand Generation Ability: Overview

Why pretrained models generalize to many fine-tuning tasks?
e Even on tasks with sufficient supervised label

Why larger models and longer pretraining steps improve generalization?
e In statistical machine learning: complicated model + exhaustive training is recipe for overfitting
e Buttheyindeed are the core advantages of pretraining models

> IS 7 EZAAF
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Visualization of Loss Landscape

RJot the loss function around a model parameter 6
e Challenge: 6 is super high dimension

Approximation: plot the loss landscape of 6 towards two other parameters 8, and 8, [5]
f(a,B) =loss(8 + a(6 — 6) + B(6, — 6))
e Anplotalong the axes of @ and B the linear interpolation

CMU 11-66




Visualization of Loss Landscape

RJot the loss function around a model parameter 6
e Challenge: 6 is super high dimension

Approximation: plot the loss landscape of 6 towards two other parameters 8, and 8, [5]
e Anplot along the axes of @ and B the linear interpolation

A sharp loss landscape and a smooth loss landscape [5]




Visualization of Loss Landscape: BERT

SERT landscape in finetuning [6]
f(a,B) =loss(0 + a(6, — ) + (6, — 6))

e 0 starting parameter of fine-tuning: pretrained or random initialized
e 0, the finetuned parameter of this task
e 0, the finetuned parameter of another task, which is meaningful

BERT." EMNLP 2019



Visualization of Loss Landscape: BERT

SERT landscape in finetuning [6]
f(a,B) =loss(6 + a(6, — 6) + B(6, — 0))

e 0 starting parameter of fine-tuning: pretrained or random initialized
e 0, the finetuned parameter of this task
e 0, the finetuned parameter of another task, which is meaningful

end f| start
point [ point
4] ~

Loss landscape of finetuning MNLI from random or pretrained BERT [6]

e
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Visualization of Loss Landscape: BERT

SERT landscape in finetuning [6]
f(a,B) =loss(6 + a(6, — 6) + B(6, — 0))

e 0 starting parameter of fine-tuning: pretrained or random initialized
e 0, the finetuned parameter of this task
e 0, the finetuned parameter of another task, which is meaningful

Random Pretrained

end f| start
point [ point
4] ~

Loss landscape of finetuning MNLI from random or pretrained BERT [6]

e
F 17 e -

4 F . 2 2 e 2
I I =R I T 77
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f BERT." EMNLP 2019



Visualization of Loss Landscape: BERT

Pt the optimization path: project the checkpoint ' at different steps to the loss landscape

4 4

3] 3

% 2]

1, 1

0 0

_1 _1-

—2 -2

-3 -3{

t4-83-2-10 1 2 & 4 Ha-3-2=10 1 2 3 4
o ——

Optimization Trajectory when finetuning MNLI from random (left) and pretrained (right) BERT [6]
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Outline

1. What is captured in BERT?

2. Why pretrained models generalize?
o Loss landscapes
o Implicit bias of language models

3. What does in-context learning do?




Inductive Bias of Language Models: Pretraining Longer

2:
e 80
>88.0
© 2:75 9
S 815 o
O Pre-traini =
T L -
2870 re-training 270 2
= —e— Linear Probe E
8 86.5 1\ , 2 65 g
o ec.0 h ’#71 "k N ~ '1\ ) ¢
= I )
S ¥ AP A AL' /) é 2.60%
2 85.5 ﬂﬂl ’“N’ Y‘ : ‘z 'I W ¥
()

200 400 600 800 1000 1200 1400
Number of Steps / 1000

Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]
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Inductive Bias of Language Models: Pretraining Longer

Yet smoothly improving
downstream generalization

X

>88.0 I

G 12754
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(T @42 ) e e e e e e A o — J
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= —e— Linear Probe E
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th 86.0 7 i t ol )

z w A Al T
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2 85.5 o ’s’hVﬂ.’ Y‘ v 1 .I i T '

() _. _______________ -4

200 400 600 800 1000 1200 1400

Number of Steps / 1000 Signs of overfitting and
instable learning

Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]




Inductive Bias of Language Models: Pretraining Longer

Same pretraining loss but
flattener loss shape

@ 88.50 2.70
§88 25 2.68 i
L. (2]
= 88.00 ¥ 4 57 - b e-training 2.66 ©

\ 14 14 -
Trace of (Loss) O 87.75, /1, - -+-- Trace of Hessian o
Hessian: A < . e 400 =
reflection of the loss - 87-50 ; Lmear PfOb% SST: 2.62 =
. .

flatness 8 87'25"/1 . . le b6 I'I:'\ /’ g
e b \ f i .
-z) 87.00 ; o g ,Ty ll‘l ‘ .t 0 ¢12.60 q)

2 86.75 ¢ V3 6§2 ——

O 86.50 2.56

400 600 800 1000 1200 1400
Number of Steps / 1000

Probing Performances versus Pretraining Loss of a 25M Parameter BERT [7]




Inductive Bias of Language Models: Larger Models

Flatness,
implicit bias

Models with
T minimum loss
(global min)

N

Optimizatia‘n trajectory

lllustration of Optimization Trajectory [7]




Inductive Bias of Language Models: Larger Models

Flatness,
implicit bias

—————

Larger models can reach a flattener

Models with optima:

T minimum |OSS 1. Larger transformers have bigger
solution space

~

~
, ~
4

7 Small Model

/

Y (global mln) 2. They cover smaller transformers
' Ay 3. Optimizer keep seeking for flattener
v L ““\%\ optima, even reached same loss
—~ >~"Optimization trajectory

Large Model

lllustration of Optimization Trajectory [7]

CMU 11-667 Fall 20




Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima

e Better starting point

e Better loss shape
e Pretraining longer and larger Transformers lead to more flatness




Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima

e Better starting point

e Better loss shape
e Pretraining longer and larger Transformers lead to more flatness

Why flatness matters?
e Many empirical evidences showing its connection to generalization ability
e Intuitively, more robust to data variations/noises
e Theoretically, argued that it leads to simpler network solutions
o Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997
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Why Pretrained Models Generalize: Summary

Many observations on pretrained models lead to flatter optima
e Better starting point
e Better loss shape
e Pretraining longer and larger Transformers lead to more flatness
Why flatness matters?
e Many empirical evidences showing its connection to generalization ability
e Intuitively, more robust to data variations/noises
e Theoretically, argued that it leads to simpler network solutions
o Hochreiter, S. and Schmidhuber, J. Flat minima. Neural Computing 1997
Why pretrained models prefer flatter optima?

e An inductive bias of the optimizer, the architecture, the pretraining loss, or the combination of
them?

e Much more research required
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Outline

1. What is captured in BERT?
2. Why pretrained models generalize?

3. What does in-context learning do?
o Semantic Prior or Input-Label Mapping

o Connection with Gradient Decent




In-Context Learning Interpretation: Observations

Natural language targets:

{Positive/Negative} sentiment Two sources of information:
1. Semantic knowledge captured in LLM
Contains no wit [...] \n  Negative 2. In-context training signals (input-label
Very good viewing [...] \n  Positive m appin g)
A smile on your face \n
'
Language
Model
v
[ Positive ]

Regular In-Context Learning [8]

tii7 7 (A ", A
L e 7
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In-Context Learning Interpretation: Observations

Natural language targets:

{Positive/Negative} sentiment Two sources of information:

1. Semantic knowledge captured in LLM

Contains no wit [...] \n  Negative 2. In-context training signals (input-label
Very good viewing [...] \n  Positive m appin g)
A smile on your face \n
! Which one works?
Language . _
Model Mixed observations:

T e Random in-context labels work
" Existing semantic knowledge
Positive - .
[ ] e Order of in-context data matter
— In-context training signals

Regular In-Context Learning [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.



In-Context Learning Interpretation: Random Label Test

Flipped natural language targets:

{Negative/Positive} sentiment Randomly flip X% of binary labels
e More flips (X1), more requirement of

Contains no wit [....] \n  Positive existing knowledge to make correct

Very good viewing [...]  \n Negative prediction

A smile on your face \n

I Behavior of models with bigger X%
Language e Those care less use more inner knowledge
Model ° Those impacted more learn more
in-context
[ Negative ]

Figure 18: Flipped-Label In-Context Learning [8]
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In-Context Learning Interpretation: Random Label Test

Zf}ﬁggﬁv’;a/,éuo’ﬁ,-'t,-’fg}g;’:ﬁﬁnﬁ;%ets‘ Randomly flip X% of binary labels
e More flips (X1), more requirement of existing
Contains no wit [....] \n  Positive knowledge to make correct prediction
Very good viewing [...]  \n Negative
2l S OUIRECE S Behavior of models with bigger X%
I e Those care less use more inner knowledge
[ Language J e Those impacted more learn more in-context
hoael Question:
: e Does larger LM care more, or less about
[ Negative ] bigger X?

Flipped-Label In-Context Learning [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.



In-Context Learning Interpretation: Random Label Test

PalL.M InstructGPT
100 100
S 80 \\M 80 |4 Larger models perform better with 0% flipped
> 60 | AN 60 \ label
S X >y e i
5 40 40 \ e Butare much more sensitive to label flips
Q
< 20 20
0L 0
0 25 50 75 100 0 25 50 75 100
% flipped labels % flipped labels
—+— PaLM-540B | Large| —— text-davinci-002
Pal.M-62B —4— text-davinci-001
PalLM-8B text-curie-001
- - - Random text-babbage-001
Small text-ada-001

- - - Random

PaLM and GPT in Flipped-Label In-Context Learning, binary
classification with 16 examples per class [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.



In-Context Learning Interpretation: Random Label Test

PalLM InstructGPT
100 100
S 80 \\\A 80 ‘\ Larger models perform better with 0% flipped
260 | AN 60 | N label
S I e, e M . :
5 40 40 \ e Butare much more sensitive to label flips
Q
< 20 20
0 R 0 The strongest models can even over-correct
0 25 50 75 100 - -
: o -
% flipped labels % flipped labels With merely 32 in-context labels
—+— PaLM-540B | Large| —— text-davinci-002 Th b | L fext
kel S i s ere must be some learning in in-contex
Pal. M-8B text-curie-001 learni ng
--- Random text-babbage-001 e Especially in larger LMs
Small text-ada-001
- - - Random

PaLM and GPT in Flipped-Label In-Context Learning, binary
classification with 16 examples per class [8]
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[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. CM




In-Context Learning Interpretation: No Semantic Test

Semantically-unrelated targets:

{Foo/Bar}, {Apple/Orange}, {A/B} Use semantically-unrelated label terms

e FE.g, foo/barinstead of positive / negative
Models have to learn more from in-context

Contains no wit [...] \n Foo °
Very good viewing [...] \n Bar
A smile on your face \n
I Behavior of models with unrelated labels
Language e Those perform well learns more in-context
Model e Those impacted rely more in existing
) knowledge
[ Bar ]

In-Context Learning with Semantically-Unrelated Label Terms [8]

[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023.



In-Context Learning Interpretation: Observations

PalLM InstructGPT
100 — .

90 188 Larger models work better with unrelated labels
80 0 |- e They learn in-context label mappings better
X 70 70
%) gg ) gg Smaller models are more prune to unrelated
5 40 40 labels .

2 30 30 | e They rely more on their prior-knowledge

20 20

10 |- 10

0 0
8B 62B 540B a-1b-1c-1d-1d-2

[] Semantically-unrelated targets (SUL-ICL)
B Natural language targets (regular ICL)

In-Context Learning Accuracy with
Semantically-Unrelated Labels versus Related Labels [8]

i 4 77
[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. CM U 1 1 67 Fa T




In-Context Learning Interpretation: Observations

100 | 100 | '
S 80 30 /b" Larger |models better leverages in-context
> 60 e 60 ﬁ examples |
S w o — e Advantages more pronounces with more
5 40 40
3 labels
< 20 20 |
0 T 0 N ‘ Not much better than random with two
4 0 ;i 1? " 0 o 1? examples
CXCMPIALS per class  # eXCMPIATS PErclass o Confirms unrelated labels are not aligned
—4— PaLM-540B —e— code-davinci-002 with existing semantic knowledge

PalLM-62B —e— code-davinci-001
PalLM-8B —eo— code-cushman-001
- - - Random - - - Random

In-Context Learning with Different Number of Semantically-Unrelated Labels [8]
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[8] Wei, et al. "Larger language models do in-context learning differently." arXiv 2023. CM U




In-Context Learning Interpretation: Observations

Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
e Less sensitive to flipped labels
e Hard to capture semantically-unrelated input-label mappings
e Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples
e (Canreverse their semantic prior to predict flipped labels
e (Can learn semantic-unrelated label mappings
e Better utilizes more in-context examples
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In-Context Learning Interpretation: Observations

Smaller LMs rely more on existing knowledge and are less effective in learning from in-context
e Less sensitive to flipped labels
e Hard to capture semantically-unrelated input-label mappings
e Random labels unlikely to change output of small LMs

Larger LMs are more effectively in learning from in-context examples
e (Canreverse their semantic prior to predict flipped labels
e (Can learn semantic-unrelated label mappings
e Better utilizes more in-context examples

Why? How can LLMs learn from in-context examples?

it 7 (2 e /
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Outline

1. What is captured in BERT?
2. Why pretrained models generalize?

3. What does in-context learning do?
o Semantic Prior or Input-Label Mapping

o Connection with Gradient Decent




Learning in In-Context Learning: Gradient Construction

©ne can manually construct a Transformer (TFgp) that does gradient operation in in-context
learning

e |ts prediction given in-context learning examples (X, Yx)

== a reference model after performing SGD on (X, Y)
[

The predict change of adding a new (x,y) is similar with reference model after an SGD step with
(x,y)

/ e s
SRR s s :
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Learning in In-Context Learning: Gradient Construction

©ne can manually construct a Transformer (TFgp) that does gradient operation in in-context
learning

e |ts prediction given in-context learning examples (X, Yz)
== a reference model after performing SGD on (X, Y)

e The predict change of adding a new (x,y) is similar with reference model after an SGD step with
(x,y)

Currently it can be done in these conditions [9]:

e Linear self-attention, no SoftMax

e Reference model is a simple regression model such as linear regression

e (an stack linear self-attention with MLP but nothing more, i.e. no layer norm etc.

,,,,,,,,,
7777 ez 2227
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Learning in In-Context Learning: Gradient Construction

Detailed mathematical construction can be found in Oswald et al. 2023 [9].

Intuitively:
e Self-attention is a high-capacity function and can approximate many math operations

e The reference model (the one who does SGD) is a simple linear regression model|
e Lost of non-linearity removed to facilitated the construction

e e
L L L T i = AT 77
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Learning in In-Context Learning: Gradient Construction

®etailed mathematical construction can be found in Oswald et al. 2023 [9].

Intuitively:

e Self-attention is a high-capacity function and can approximate many math operations
e The reference model (the one who does SGD) is a simple linear regression model

e Lost of non-linearity removed to facilitated the construction

A very toy-ish set up, but a good thought process and a starting point to understand complicated
LLMs

e Similar assumptions are often taken in current deep learning theory research

The gradient decent Transformer TFgp is learn in-context by gradient decent by construction




TRy S consructd butnoteared
VregErring in In-Context Learning: Trained Transformer

One ca {ran the oy Transormer Thy, nthesame ncontet laming et up
v Eg,toperfom near fegrssion ek withn-<ontet examples

s i (72 £ =
7 7z L
L 7 AT IS —FFFITF T

CMU 11-667 Fall




Learning in In-Context Learning: Trained Transformer

TFgp is constructed but not learned

A constructed measurement target

One can train the toy Transformer TFrp,i, in the same in-context learning set up

0.40
0.35 -
1%}
3 0.30
- |
0.25 -

0.20 =

— GD
== Trained TF

2000 4000
Training steps

2.59

2.0

L2 Norm

=
n

0.0

=
[s)
)

e
o

== Preds diff == Model cos

Model diff

A ==l

0 1000 2000 3000 4000 5000

Training steps

Comparison of constructed TFgp and Trained TFrpain. [9]

r1.00

r0.95

r0.90

r0.85

0.80

E.g., to perform linear regression task with in-context examples

Trained Transformer matches the
constructed gradient decent Transformer

e Near identical
O  Prediction L2 difference
O Model sensitivity cosine/L2 difference
O Model sensitivity L2 difference




Learning in In-Context Learning: Trained Transformer

TFgp is constructed but not learned

A constructed measurement target

One can train the toy Transformer TFrp,i, in the same in-context learning set up

0.40
0.35 -
1%}
3 0.30
- |
0.25 -

0.20 =

— GD
== Trained TF

2000 4000
Training steps

2.59

2.0

L2 Norm

=
n

0.0

=
[s)
)

e
o

== Preds diff == Model cos

Model diff

A ==l

0 1000 2000 3000 4000 5000

Training steps

Comparison of constructed TFgp and Trained TFrpain. [9]

r1.00

r0.95

r0.90

r0.85

0.80

E.g., to perform linear regression task with in-context examples

Trained Transformer matches the
constructed gradient decent Transformer

e Near identical
O  Prediction L2 difference
O Model sensitivity cosine/L2 difference
O Model sensitivity L2 difference

Transformers (with strong assumptions
and simplifications) learn in-context by
gradient descent (of a linear regression
model)




Learning in In-Context Learning: Trained Transformer

Compare the constructed and learned Transformer in multi-layer setting

0.40 -
—_— GD 2.59
0.35 — GD*t
= Trained TF 2.0
0.30
IS
A 1.54
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> S
3 0.25 =
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0 1000 2000 3000
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GD vs trained TF

=== Model cos

=== Preds diff

Model diff |

0

1000 2000 3000
Training steps

Two-layer TFgp versus TFrpain- [9]

[9] Oswald, et al. “Transformers Learn In-Context

Gradient Descent." ICML 2023
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Learning in In-Context Learning: Trained Transformer

Compare the constructed and learned Transformer in multi-layer setting

—_— GD 2.59
0.35 — GD*t
= Trained TF 2.0
0.30
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0 1000 2000 3000

Training steps

GD vs trained TF

=== Model cos

=== Preds diff

Model diff |

0

1000 2000 3000
Training steps

Two-layer TFgp versus TFrpain- [9]

[9] Oswald, et al. “Transformers Learn In-Context by

Gradient Descent." ICML 2023
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Learning in In-Context Learning: Theory versus Empirical

Empirical Observation Theory
° Larger Transformers better learn in-context ° Transformers perform one gradient step per
e  Morein-context examples help larger model layer
more ° And per in-context example
° Smaller Transformers rely more on existing ° Smaller models have limited gradient steps built
semantic in
Assumptions :

» Linear attention + MLP Transformer
» Simple regression reference model
» Shallow networks




In-Context Learning Interpretation: Summary

Various solid empirical evidence that:
° Larger Transformers do learn in-context
° In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations
° Good intuitions

° One way to make sense of in-context learning




In-Context Learning Interpretation: Discussion

Likely many not-yet-finished learning theory,
° This interpretation is more for our understanding and inspiration
° Strong assumptions are introduced to make the theory

My take:

° In-context learning is different from SGD and is more powerful in some scenarios
° Connecting with existing, well-known techniques is a good starting point

(]

Eventually researchers will develop new theorical frameworks to explain the amazing capabilities of LLM
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BERT Attention Patterns: Linguistic Examples
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[SEP]
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BERT Attention Patterns: Linguistic Examples
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Probing Pretraining Representations: Across Layers

Nixing representations from multiple layers:
h"X = ¥ sthl; st = softmax(al)

Definition: Center-of-Gravity
E[l] = le : Sl

e Expected layer to convey the information needed by the probe task
e Larger Center-of-Gravity — information needed captured at higher layers

Definition: Expected Layer
A! = Probing Score(0: 1) — Probing Score(0: 1 — 1)

¥ 1AL

e A':The benefit of adding layer L in the mix
e E[A']: The expected layer to resolve the probing task




Probing Across Time Tasks

Package Knowledge Task Formulation Examples
POS Tagging s‘:“;,l}nz
Syntactic Chunking Token Labeling Alg;ﬁlc,an
LKT Linguistic Name Entity Recognition lcgll;g
Syntactic Arc Predication i Sm— e £
Token Pair Labeling Peter and May bought a car .
Syntactic Arc Classification & v
Peter bought
Irregular Forms . v Aaron broke the unicycle. X Aaron broken the unicycle.
Determiner-Noun Agree. Comparing . v Rachelle had bought that chair X Rachelle had bought that chairs.
BLIMP Linguistic Subject-Verb Agreement E Sc‘ores v These casseroles disgust Kayla. X These casseroles disgusts Kayla.
Island Effect S(./)r > S(%) v Which bikes is John fixing? X Which is John fixing bikes?
Filler Gap v Brett knew what many waiters find. X Brett knew that many waiters find.
Google RE Masked LM Albert Einstein was born in [MASK] v: [MASK] = 1879
L ARTA Factual T-REx Expected: Humphrey Cobb was a [MASK] and novelist v: [MASK] = screenwriter
SQuAD Yw € VRoBERTa \ {v'}, | A Turing machine handles /[MASK] on a strip of tape. V: [MASK] = symbols
Commonsense ConceptNet P(/ | C) > P(w | C) | You can use [MASK] to bathe your dog. V1 [MASK] = shampoo
Conjunction Acceptability v Jim yelled at Kevin because Jim was so upset. X Jim yelled at Kevin and Jim was so upset.
Winograd v The fish ate the worm. The fish was hungry. X The fish ate the worm. The worm was hungry.
Sense Making v Money can be used for buying cars. X Money can be used for buying stars.
Comparing v Someone unlocks the door and they go in. Someone leads the way in.
SWAG Sentence Scores X Someone unlocks the door and they go in. Someone opens the door and walks out.
CAT Commonsense Expected: X Someone unlocks the door and they go in. Someone walks out of the driveway.
VX, X Someone unlocks the door and they go in. Someone walks next to someone and sits on a pew.
S(v) > S(X) v People can choose not to use Google, and since all other search engines re-direct to Google,
Argument Reasoning Google is not a harmful monopoly.
X People can choose not to use Google, but since other search engines do not re-direct to Google,
Google is not a harmful monopoly.
Taxonomy Conjunction . - A ferry and a floatplane are both a type of [MASK]. v vehicle X airplane X boat
- Multiple Choice -
Antonym Negation Masked LM It was [MASK] hot, it was really cold. v not X really
OLMPpICS Reasoning Object Comparison Exp d: VX, The size of a airplane is usually much /MASK] than the size of a house. X smaller v larger

Always Never

Multi-Hop Composition

P(v|C)>PX|C)

A chicken [MASK] has horns. v never X rarely X sometimes X often X always

‘When comparing a 23, a 38 and a 31 year old, the [MASK] is oldest. v second X first X third




In-Context Learning Interpretation: Summary

Various solid empirical evidence that:
e Larger Transformers do learn in-context
e In-context learning ability correlates with model scale

Theorical connections are build between in-context learning and gradient decent observations
e (Good intuitions

e One way to make sense of in-context learning
e Very strong assumptions are introduced for the connection, unfortunately
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